Document-level relation extraction (DocRE) aims to identify semantic labels among entities within a single document. One major challenge of DocRE is to dig decisive details regarding a specific entity pair from long text. However, in many cases, only a fraction of text carries required information, even in the manually labeled supporting evidence. To better capture and exploit instructive information, we propose a novel expLicit syntAx Refinement and Subsentence mOdeliNg based framework (LARSON). By introducing extra syntactic information, LARSON can model subsentences of arbitrary granularity and efficiently screen instructive ones. Moreover, we incorporate refined syntax into text representations which further improves the performance of LARSON. Experimental results on three benchmark datasets (DocRED, CDR, and GDA) demonstrate that LARSON significantly outperforms existing methods.
translated by 谷歌翻译
时间动作本地化在视频分析中起着重要作用,该视频分析旨在将动作定位和分类在未修剪视频中。先前的方法通常可以预测单个时间尺度的特征空间上的动作。但是,低级量表的时间特征缺乏足够的语义来进行动作分类,而高级尺度则无法提供动作边界的丰富细节。为了解决这个问题,我们建议预测多个颞尺度特征空间的动作。具体而言,我们使用不同尺度的精致特征金字塔将语义从高级尺度传递到低级尺度。此外,为了建立整个视频的长时间尺度,我们使用时空变压器编码器来捕获视频帧的远程依赖性。然后,具有远距离依赖性的精制特征被送入分类器以进行粗糙的动作预测。最后,为了进一步提高预测准确性,我们建议使用框架级别的自我注意模块来完善每个动作实例的分类和边界。广泛的实验表明,所提出的方法可以超越Thumos14数据集上的最先进方法,并在ActivityNet1.3数据集上实现可比性的性能。与A2NET(tip20,avg \ {0.3:0.7 \}),sub-action(csvt2022,avg \ {0.1:0.5 \})和afsd(cvpr21,avg \ {0.3:0.7 \}) ,提出的方法分别可以提高12.6 \%,17.4 \%和2.2 \%
translated by 谷歌翻译
视频对视频合成(VID2VID)在从一系列语义图中生成照片真实视频方面取得了显着的结果。但是,该管道遭受了高计算成本和较长的推理潜伏期的损失,这在很大程度上取决于两个基本因素:1)网络体系结构参数,2)顺序数据流。最近,基于图像的生成模型的参数已通过更有效的网络体系结构显着压缩。然而,现有方法主要集中于减肥网络体系结构,而忽略了顺序数据流的大小。此外,由于缺乏时间连贯性,基于图像的压缩不足以压缩视频任务。在本文中,我们提出了一个时空的压缩框架,\ textbf {fast-vid2vid},该框架着重于生成模型的数据方面。它首次尝试减少计算资源并加速推理。具体而言,我们在空间上压缩输入数据流并减少时间冗余。在提出的时空知识蒸馏之后,我们的模型可以使用低分辨率数据流合成密钥框架。最后,快速VID2VID通过运动补偿以轻微延迟为中间框架插入中间框架。在标准基准测试中,快速VID2VID围绕实时性能达到20 fps,并在单个V100 GPU上节省了约8倍的计算成本。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
In this paper, we propose Adam-Hash: an adaptive and dynamic multi-resolution hashing data-structure for fast pairwise summation estimation. Given a data-set $X \subset \mathbb{R}^d$, a binary function $f:\mathbb{R}^d\times \mathbb{R}^d\to \mathbb{R}$, and a point $y \in \mathbb{R}^d$, the Pairwise Summation Estimate $\mathrm{PSE}_X(y) := \frac{1}{|X|} \sum_{x \in X} f(x,y)$. For any given data-set $X$, we need to design a data-structure such that given any query point $y \in \mathbb{R}^d$, the data-structure approximately estimates $\mathrm{PSE}_X(y)$ in time that is sub-linear in $|X|$. Prior works on this problem have focused exclusively on the case where the data-set is static, and the queries are independent. In this paper, we design a hashing-based PSE data-structure which works for the more practical \textit{dynamic} setting in which insertions, deletions, and replacements of points are allowed. Moreover, our proposed Adam-Hash is also robust to adaptive PSE queries, where an adversary can choose query $q_j \in \mathbb{R}^d$ depending on the output from previous queries $q_1, q_2, \dots, q_{j-1}$.
translated by 谷歌翻译
With increasing privacy concerns on data, recent studies have made significant progress using federated learning (FL) on privacy-sensitive natural language processing (NLP) tasks. Much literature suggests fully fine-tuning pre-trained language models (PLMs) in the FL paradigm can mitigate the data heterogeneity problem and close the performance gap with centralized training. However, large PLMs bring the curse of prohibitive communication overhead and local model adaptation costs for the FL system. To this end, we introduce various parameter-efficient tuning (PETuning) methods into federated learning. Specifically, we provide a holistic empirical study of representative PLMs tuning methods in FL. The experimental results cover the analysis of data heterogeneity levels, data scales, and different FL scenarios. Overall communication overhead can be significantly reduced by locally tuning and globally aggregating lightweight model parameters while maintaining acceptable performance in various FL settings. To facilitate the research of PETuning in FL, we also develop a federated tuning framework FedPETuning, which allows practitioners to exploit different PETuning methods under the FL training paradigm conveniently. The source code is available at \url{https://github.com/iezhuozhuo/FedETuning/tree/deltaTuning}.
translated by 谷歌翻译
The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.
translated by 谷歌翻译
Attention-based neural networks, such as Transformers, have become ubiquitous in numerous applications, including computer vision, natural language processing, and time-series analysis. In all kinds of attention networks, the attention maps are crucial as they encode semantic dependencies between input tokens. However, most existing attention networks perform modeling or reasoning based on representations, wherein the attention maps of different layers are learned separately without explicit interactions. In this paper, we propose a novel and generic evolving attention mechanism, which directly models the evolution of inter-token relationships through a chain of residual convolutional modules. The major motivations are twofold. On the one hand, the attention maps in different layers share transferable knowledge, thus adding a residual connection can facilitate the information flow of inter-token relationships across layers. On the other hand, there is naturally an evolutionary trend among attention maps at different abstraction levels, so it is beneficial to exploit a dedicated convolution-based module to capture this process. Equipped with the proposed mechanism, the convolution-enhanced evolving attention networks achieve superior performance in various applications, including time-series representation, natural language understanding, machine translation, and image classification. Especially on time-series representation tasks, Evolving Attention-enhanced Dilated Convolutional (EA-DC-) Transformer outperforms state-of-the-art models significantly, achieving an average of 17% improvement compared to the best SOTA. To the best of our knowledge, this is the first work that explicitly models the layer-wise evolution of attention maps. Our implementation is available at https://github.com/pkuyym/EvolvingAttention
translated by 谷歌翻译
We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the $U(1)$ degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous $U(1)$ system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions.
translated by 谷歌翻译